Comparison of CSES ionospheric RO data with COSMIC measurements

Xiuying Wang1, Wanli Cheng2, Zihan Zhou1, Song Xu1, Dehe Yang1, Jing Cui1

1. Institute of Crustal Dynamics, China Earthquake Administration, Beijing, China
2. Xinyang Station, Henan Earthquake Administration, Henan, China

Abstract: CSES is a newly launched electric-magnetic satellite in China; its main scientific objective is to monitor earthquake related disturbances in ionosphere. A GNSS occultation receiver (GOR) is installed on the satellite to inverse electron density related parameters. In order to validate the radio occultation (RO) data from GOR onboard CSES, a comparison between CSES RO and the co-located COSMIC RO data is conducted to check the consistency and reliability of the CSES RO data using measurements from February 12, 2018 to March 31, 2019. CSES RO peak values (\(N_mF_2\)), peak heights (\(h_mF_2\)), and electron density profiles (EDPs) are compared with corresponding COSMIC measurements in this study. The results show that: (1) \(N_mF_2\)s between CSES and COSMIC are in extremely good agreement with a correlation coefficient of 0.9891. The near zero bias between the two sets is 0.01235 × \(10^3\)/cm³ with a RMSE of 0.3680 × \(10^3\)/cm³; and the relative bias is 2.14% with a relative RMSE of 16.40%, which are in accordance with previous studies according to error propagation rules. (2) \(h_mF_2\)s between the two missions are also in very good agreement with a correlation coefficient of 0.9379; the mean difference between the two sets is 0.73km with a RMSE of 13.02 km, which is within the error limits of previous studies; (3) Co-located EDPs between the two sets are generally in good agreements, but with a better agreement for data above 200km than that below this altitude. Data at the peak height ranges show the best agreement, and then data above the peak regions; data below the peak regions, especially at the altitude of about the E layer, show relatively large fluctuations. It is concluded that CSES RO data are in good agreement with COSMIC measurements, and the CSES RO data are applicable for most ionospheric-related studies. However, particular attention should be paid to EDP data below peak regions in application.

Key words: CSES satellite; COSMIC mission; radio occultation; validation; ionosphere

1. Introduction

The first China Seismo-Electromagnetic Satellite (CSES), also called ZH-1 in China, has been working for over 1 year since its launch on February 2, 2018. This satellite is the first spaced-based platform in China for both the 3-D earthquake observation and geophysical field measurement; a subsequent satellite of this series will be launched in 2022 and the engineering work is under way. The primary scientific objectives of the CSES mission is to obtain world-wide data of space environment of the electromagnetic field, ionospheric plasma and charged particles, to monitor and study the ionospheric perturbations which may possibly associated with earthquake activity, especially with those destructive ones, to support the research on geophysics, space sciences as well as electric wave sciences and so on, and also to provide the data sharing service for international cooperation and scientific community (Shen et al., 2018; Wang et al., 2019).

The CSES satellite is sun synchronous orbit with an inclination angle of 97.4° at the altitude of 507 km. The local time of descending and ascending nodes are 1400 and 0200 respectively. It takes about 94.6 minutes to complete a circular orbit, thus about 15 orbits per day. The revisiting
period of CSES is 5 days, which means the satellite will nearly repeat the orbits after 5 days. At present, the observation range of the CSES satellite is mainly between −65° and +65° of geographic latitudes.

There are eight Chinese payloads and one Italian payload onboard the CSES satellite, belonging to 3 categories: (1) electromagnetic observations, including search-coil magnetometer (SCM), electric field detector (EFD), and high precision magnetometer (HPM); (2) ionosphere related observations, including GNSS occultation receiver (GOR), plasma analyzer package (PAP), Langmuir probe (LAP), and tri-band beacon (TBB); (3) and high-energy particles observations, including high energetic particle package (HEPP) and high energetic particle package detector (HEP), of which HEPP is provided by Italian Space Agency.

Of the eight payloads, four are related to ionospheric parameter observations. The GOR payload onboard CSES is a GPS/BD2 receiver to inverse ionospheric electron densities according to the radio wave refractivity when traversing the ionosphere. It is known that low Earth Orbit (LEO) based GPS/GNSS radio occultation (RO) technique has been a powerful technique in ionosphere monitoring; using this technique, the accurate electron density profiles (EDPs) in the ionosphere can be derived with high vertical resolution on a global scale from bending information of the RO signals (Kuo et al., 2004; Rocken et al., 2000; Schreiner et al., 1999). Therefore, many LEO satellites were launched with RO payload after the pioneer RO experiment on GPS/MET mission (Hajj et al., 1998; Schreiner et al., 1999), such as the CHAMP satellite (Jakowski et al., 2002; Wickert et al., 2009), the GRACE satellites (Beyerle et al., 2005), the most famous COSMIC mission (Anthes et al., 2008; Lei et al., 2007), and so on. The application of RO technique is also an important part of the CSES satellite. Combining with the in situ electron density measurements onboard CSES, the CSES RO retrieved electron densities can be used to study global scale ionospheric 3D images from the bottom of the ionosphere to the altitude of the CSES satellite using the large amount of daily occultation events. However, a complete and thorough validation of the RO measurements obtained by the CSES satellite is a necessary work before the retrieved electron density profiles can be used for ionospheric studies.

A primary comparison, between CSES and COSMIC using the global distribution of peak values (NmF2) and peak height (hmF2) data, was carried out during the in-orbiting test period of the CSES satellite, and the CSES NmF2 values were also compared with the measurements from 3 digisonsdes in China (Cheng et al., 2018). Both the comparisons show that the CSES RO NmF2 data are generally consistent with data from other measurements. However, as the comparisons are limited to the peak values and the date coverage is only two months, a more complete validation is still required to assess the consistency and reliability of the RO profiles obtained by the CSES satellite. A large amount of RO profiles have been obtained so far by CSES, which provide enough data to implement a more detailed validation work.

Validation of RO profiles is usually done by comparing the profiles with the measurements from vertical ionosondes or incoherent scatter radars (ISRs). However, RO electron density profiles above the F2 peak region cannot be validated by ionosonde observations due to the unreliable extrapolating data at these altitudes. In addition, the uneven distribution of the ionosonde stations, most located on inland and fewer in the oceans, restricts the global comparison work. Although ISRs can be used to validate RO electron density profiles above F2 peak region, this comparison is limited due to the relatively small number of ISR sites as well as their limited operating time. Therefore, we will carry out the comparison work using the RO measurements from the COSMIC
dataset in this paper.

Validation of the COSMIC electron density measurements has been performed in numerous studies using different measurements, such as the cross validation of the retrieved profiles from nearby spacecraft in the same COSMIC mission (Schreiner et al., 2007), comparison with ground-based ionosondes and ISRs (Cherniak and Zakharenkova, 2014; Chu et al., 2010; Chuo et al., 2011; Habarulema et al., 2014; Kelley et al., 2009; Krankowski et al., 2011; Lei et al., 2007; McNamara and Thompson, 2015), comparison with the in situ electron density measurements (Lai et al., 2013; Pedatella et al., 2015; Yue et al., 2011), comparison with radio tomography data using space climatology phenomenon (Thampi et al., 2011), comparison with ionospheric model IRI (Lei et al., 2007; Wu et al., 2015; Yang et al., 2009), and so on. As COSMIC RO data have been extensively validated and widely accepted for application, COSMIC RO data are used to validate the in situ plasma density observations from the Swarm constellation (Lomidze et al., 2017). We therefore also try to use the COSMIC RO dataset to validate CSES RO measurements because of its relative large amount of data with globally spatial coverage. In addition, similar RO retrieved data from the two sets also provides a unique opportunity to check the consistency and reliability of CSES profiles except for N_{mF_2} and h_{mF_2} parameters.

In this study, the validation work is implemented by comparing CSES N_{mF_2}, h_{mF_2}, and data from EDPs at some altitudes with corresponding COSMIC measurements, and the bias and RMSE between the two sets are then calculated and estimated to evaluate the consistency and reliability of CSES RO inversed data. Based on the results, an application suggestion is given on the CSES RO data.

2. Data and Method

2.1 CSES and COSMIC RO data

1. CSES RO data

GOR payload onboard CSES can receive the dual frequencies from GPS (L1: 1575.42MHz±10MHz; L2: 1227.6MHz±10MHz) and DB2 (L1:1561.98MHz±2MHz; L2: 1207.14MHz±2MHz) to inverse atmospheric and ionospheric parameters with sampling rate of 100Hz and 20Hz respectively. Firstly, TECs from GPS to LEO are calculated from the carrier phase of the dual frequencies; and then electron densities are retrieved from TECs using the Abel integration transformation. The Abel integration method and assumptions used in RO inversion process have been described in detail in many publications (Kuo et al., 2004; Lei et al., 2007; Schreiner et al., 1999) and will therefore not repeat here.

The GOR payload onboard CSES started to work on February 12, 2018 and ionospheric radio occultation (RO) measurements have been conducted since then. CSES RO inversed data are divided into 5 levels: 0, 1, 2, 2A and 3. Level-0 is original data; Level-1 is physical quantity in time order; Level-2 is physical quantity data with satellite orbital information and geomagnetic coordinates, while Level-2A is similar with Level 2, but with higher precise orbital information; and Level-3 is 2D structural data product from Level-2 and Level-2A, which can provide peak value, peak height and EDP data.
All the CSES RO data of the 5 levels are saved in HDF5 format, which is organized in a hierarchical way. One file is saved for each occultation event, and about 500 to 600 occultation event files can be obtained per day. Data users can refer to the data specification document for detailed description of data file naming conventions and data level classification, which can be obtained from the CSES data sharing center website www.leos.ac.cn.

More than 180,000 CSES occultation profiles have been obtained from 2018-02-12 to 2019-03-31, of which occultation events co-located with that from the COSMIC mission will be used to carry out the comparison and validation work in this paper.

2. COSMIC RO data

The COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, also called FORMOSAT-3 in Taiwan) mission, a constellation of six identical low Earth orbit satellites launched in April 2006, is a joint Taiwan-US mission to observe the near-real-time GPS RO data (Anthes et al., 2008). COSMIC RO data come from the GPS Occultation Experiment (GOX) receivers onboard the COSMIC satellites that monitor the two GPS L-band signals to establish the relative geometries of satellite positions and differences in phase/Doppler shifts (Rocken et al., 2000). At the University Corporation for Atmospheric Research (UCAR) COSMIC Data Analysis and Archive Center (CDAAC), ionospheric profiles are retrieved by use of the Abel inversion technique from TEC along LEO–GPS rays. Detailed description of CDAAC data processing and EDP retrieval method can be found in some literatures (Kuo et al., 2004; Lei et al., 2007).

In the present study, the COSMIC level-2 electron density profiles provided as “IonPrf” files from 2018-02-12 to 2019-03-31 are used, which can be downloaded from CDAAC website http://cdaa-www.cosmic.ucar.edu/. COSMIC can provided over 2000-2500 RO profiles per day at its initial stage, but for now only 200-300 events on average can be obtained each day. Fig.1 gives the total occultation numbers of each month for both CSES and COSMIC missions from February 2018 to March 2019.

Fig. 1 Occultation number per month from February 2018 to March 2019 for both CSES and COSMIC

From Fig. 1 it can be seen that over 15,000 occultation events can be obtained by CSES each month, or over 500 per day on average, after the initial in-orbit testing stage from February 2018 to July 2018. In contrast, occultation numbers from COSMIC are much less, there are only about 200 occultations on average each day. A total of over 86,000 occultation events have been obtained from the COSMIC data center from February 2018 to March 2019.

Based on these two datasets from CSES and COSMIC, the co-located occultations within defined spatial and temporal criteria from the two measurements are selected and used to carry out the comparison work.
2.2 Data selection

In order to make the comparison between CSES and COSMIC RO data as accurate as possible, spatial and temporal criteria must be defined to select matching occultation profiles for subsequent comparison analysis.

Before determining the selection criteria, it should be pointed out here that RO retrieved electron density profiles cannot be interpreted as actual vertical profiles because both the LEO and GPS are in motion during the occultation process. The geographic location of the tangent points of a profile may vary in several hundred kilometers, which means the spatial range of a profile can cover several degrees in horizontal latitude and longitude range, and several hundred kilometers in vertical altitude range. However, the ionospheric spatial correlation can extent to a large area as suggested by some researches (Shim et al., 2008; Yue et al., 2007). According to Shim et al. (2008), the daytime meridional correlation lengths are approximately 9° and 5° at mid- and low-latitudes, and the nighttime values are about 3° and 2° at mid- and low latitudes, respectively; the zonal correlation lengths are 23° at mid-latitudes and 15° at low latitudes during the day, and are 11° at mid-latitudes and 10° at low latitudes during the night. Therefore, the matching profile pairs from the two missions must be within the correlation distances. Considering the relatively small number of occultation events from the COSMIC measurements, we define the search criteria for co-located occultation events as follows: (1) the time difference between the matching occultation pairs is less than 30 min; (2) the distance differences between the locations of the two occultation events are within 2° × 6° range in latitudinal and longitudinal directions. Here, the tangent point at F2 peak value of an occultation profile is defined as the location of the occultation event. The reason to use the peak value tangent point as the occultation location is because the peak value is normally located at the middle of a profile for the CSES EDPs, and by this way the spatial differences of the corresponding points, especially the top and bottom points, between the matching profile pairs can be limited to the correlation distance range as many as possible.

Based on the above criteria, the RO profiles from CSES and COSMIC, covering the period from February 2018 to March 2019, are searched to select the co-located profile pairs. The profiles with \(N_mF_2 \) appearing below 150km or above 500 km are discarded, and profiles with only ascending or descending part of a profile which cannot determine the peak values are also deleted from the CSES dataset. A total of 891 matching profiles are found, and their distributions are given in Fig. 2. Numbers of occultation in each 10 latitudinal region are also calculated and given in Fig. 3.
From Fig. 2, it can be seen that the selected profile pairs are globally distributed, which makes the data be representative of the whole dataset on spatial scale. In addition, the over a year temporal segment, covering different periodic components of the ionospheric variations, makes the data involved in the comparison be temporal representative also.

It is necessary to note that because the CSES satellite is sun-synchronous orbit as mentioned earlier, the local time of the occultation events is concentrated around the ascending (0200) and descending (1400) local time. Special attentions should be paid on the local time issue when CSES and COSMIC RO data are combined together.

Another point to note is that most of the selected profile pairs are distributed in the mid-latitude regions, as shown in Fig. 2 and Fig. 3, and the equatorial region as well as the high latitude regions exhibit lower number of occultation events, which ensures that the selection criteria can be satisfied for most of the selected matching profiles.

2.3 Comparison method

The CSES RO electron density data are compared with the co-located COSMIC RO data to assess the consistency and reliability of the CSES RO data relative to that of the COSMIC, and then the consistency and reliability of the CSES RO data relative to ground-based measurements are estimated using the results obtained by previous researches on COSMIC RO data according to error propagation rules.

The maximum electron density and its height, namely $N_{\text{m}F_{2}}$ and $h_{\text{m}F_{2}}$ from CSES RO data, are compared and analyzed directly with the corresponding co-located COSMIC data, respectively. Besides RO peak values, the profiles of the matching pairs are also compared in this study. To compare the similarities of the profiles, average electron density data near some special altitudes of a profile are calculated and compared. Because the orbit altitude of CSES is 507, only data below this altitude are obtained from the CSES RO retrieved EDPs. Therefore, the special altitudes involved in the comparison include 100, 150, 200, 250, 300, 350, 400, 450 and 500 km. The consistency and reliability of the CSES RO profiles are thus evaluated by combining the comparison results of these special altitudes.

Normally, the height resolution in the F region has the order of 20 km for the COSMIC RO (Kuo et al., 2004), but CSES RO data has a higher resolution due to the higher sampling rate of the radio signals. We therefore use the average data between the selected altitudes±10km, which is just within the vertical resolution of the COSMIC RO data.
In this study, all the selected matching profiles are involved in the analysis rather than those observed in geomagnetic quiet days. In this way, disturbed data caused by events such as geomagnetic storms can also be used to compare their similarities/differences under these special occasions.

3. Results and Discussions

3.1 Comparison of N_mF_2

The maximum electron density in the ionospheric F2 layer, N_mF_2, is the most important parameter in ionospheric related studies. To compare this parameter, the maximum electron density data are extracted from all the matching RO files of CSES and COSMIC measurements. Scatter plot of these matched N_mF_2 points is given in Fig. 4, also given is the histogram of the data differences between the matched peak value points. As shown in Fig. 4b, data differences between the two measurements are normally distributed; points with data differences exceeding 3 times root mean square error (RMSE), shown as hollow circles in Fig. 4a, are considered outliers and can be eliminated from the selected dataset according to 3σ rule. Red points in Fig. 4a are peak values observed during geomagnetic storm conditions of Dst< -30 nT, all of which are within 3σ limits and matched very good as shown in Fig. 4a. Fig. 4a also gives the linear fitting equation, the goodness-of-fit coefficient R^2 (square of correlation coefficient), and number of data points.

The correlation coefficient between the matched N_mF_2s with elimination of outliers is 0.9891, and correlation coefficient without elimination of outliers is 0.9786, both of which can pass the significance test of confidence level 0.01. The high correlation coefficient indicates the high consistency between the two N_mF_2 sets. The linear fitting coefficient of 0.9837 given in Fig. 4a is very close to 1; the data differences between the two sets are nearly normal distributed as shown...
in Fig. 4b, and most of the data differences is around zero, all of which means that the CSES NmF2s are nearly equal to COSMIC NmF2s with a nearly zero bias. Both the correlation coefficient and the liner fitting coefficient indicate that the CSES NmF2s are in extremely good agreement with the corresponding COSMIC data.

To quantify the error, we also calculate the RMSE and relative RMSE between the two sets. The mean of the data differences between CSES NmF2 and COSMIC NmF2 is 0.01235×10^5/cm3, and the RMSE between the two matched datasets is 0.3680×10^5/cm3, both of which are very small when comparing with the original data. Therefore, the nearly zero bias between the two measurements of NmF2 can be neglected, which is in accord with the normal distribution with most data differences clustering around zero as shown in Fig. 4b. The mean relative differences of NmF2 calculated from equation (1) is 2.135%, and the corresponding relative RMSE is 16.40%. The mean relative data differences is also extremely small. The mean of data differences and the mean of relative data differences, as well as their RMSEs, again show that the CSES RO data are in very good agreement with the COSMIC data.

$$E_r = \frac{1}{n} \sum_{i=1}^{n} \frac{z_i - y_i}{y_i} \times 100\%$$ (1)

Where z_i refers to the ith CSES NmF2 data of the matched data pairs, and y_i the corresponding COSMIC NmF2 data.

To compare the difference of correlation relationship for daytime and nighttime data, the data in Fig. 4 are divided into two groups. As introduced in section 2.2, the local time of CSES satellite is fixed at 0200 during night and 1400 during day, and the local time of RO data are around these two fixed local time, we therefore don’t need to further consider differences caused by different local time.

The scatter plots for daytime and nighttime data are drawn using the same method introduced above and given in Fig. 5. The data obtained under geomagnetic storm conditions are also shown in red color, all of which are within the 3σ limits.

The scatter plots for daytime and nighttime data are drawn using the same method introduced above and given in Fig. 5. The data obtained under geomagnetic storm conditions are also shown in red color, all of which are within the 3σ limits.

Correlation coefficient for daytime data with elimination of outliers is 0.9774, and 0.9637 without elimination of outliers; for nighttime data with elimination of outliers, correlation
coefficient is 0.9195, and 0.8767 for all the data. The higher daytime correlation coefficient indicates a better agreement for the daytime data than the nighttime data. This can be seen clearly from Fig.5, the nighttime data are obviously fluctuated more violently. The mean data differences for daytime data is -0.01634×10^3 /cm3 with a RMSE of 0.5572×10^3 /cm3, and mean data differences for nighttime data is 0.01010×10^3 /cm3 with a RMSE of 0.2094×10^3 /cm3. The opposite sign of the daytime and nighttime mean data differences indicates that the CSES daytime data is slightly smaller than that of the COSMIC, while CSES nighttime data is slightly greater than the corresponding COSMIC data, but both the means of data differences are extremely small and can be considered zero bias when comparing the original measurements.

When comparing the results given in Table 1, the absolute mean data differences for daytime data is slightly greater than that of the overall result, and with an obvious larger RMSE; while the mean data differences for nighttime data is slightly smaller than the overall result, and also with a smaller RMSE. However, the two plots in Fig.5 indicate that the daytime data is obviously better than the nighttime data. This is because the daytime data are much greater than nighttime data, absolute error cannot correctly reflect the real situation when comparing data values with different magnitudes. We therefore calculate the relative errors for both the daytime and nighttime data. The mean relative data differences for daytime data is 1.344% with a relative RMSE of 12.85%, and mean relative data difference for nighttime data 2.429% with a relative RMSE of 18.70%, which indicate an obvious better agreement for the daytime measurements.

It is necessary to point out that most of the daytime data points with higher values are located below the dash line as shown in Fig. 5, which means that the COSMIC N_mF_2s are larger than that of the CSES, so there is a negative bias between the two sets; while for nighttime data, most the data points with higher values are above the dash line, indicating greater CSES N_mF_2 values, thus there is a positive bias between them. This can also explain why there is a higher correlation coefficient when combining daytime and nighttime data together.

There is another point to point out. As can be seen from Table 1, the absolute mean difference for daytime data is negative, while the mean relative differences is positive. Further analysis shows this different signs is caused by some points with much larger CSES N_mF_2 values.

Here, we compare our results with previous studies. Lei et al. (2007) obtained a correlation coefficient of 0.85 when comparing COSMIC N_mF_2 with observations from 31 globally distributed SPIDR (The Space Physics Interactive Data Resource, http://spidr.ngdc.noaa.gov/spidr) ionosondes using data observed in July 2006. Chuo et al. (2011) demonstrated that COSMIC derived N_mF_2 values are in good agreement with digisonde observations of different seasons; they also reported an agreement about 0.96 using observations from a lower latitude ionosonde in south hemisphere using a big dataset from May 2006 to April 2008. Chu et al. (2010) found a correlation coefficient of 0.98 when comparing N_mF_2s between COSMIC and 60 globally distributed ionosondes belonging to SWPC (Space Weather Prediction Center, NOAA using data from November 2006 to February 2007. Krankowski et al. (2011)
obtained a very good correlation coefficient of 0.986 when validating COSMIC RO data in 2008 using measurements in European mid-latitude ionosondes. Our result of 0.9891 is quite similar to, or even slightly better than those results, when considering the similar solar activity levels. A relative high correlation coefficient between CSES N_mF_2 and ionosondes can be deduced since the correlation transitive conditions are satisfied according to Langford et al. (2001). We therefore obtained that CSES RO derived peak values are in very good agreement with COSMIC and ground-based measurements.

For N_mF_2 relative errors, Krankowski et al. (2011) obtained a mean relative bias of 0.72% with a standard deviation of 8.42%, and the slope of the linear fitting line is 0.994 using a manual screening dataset in Europe, which is better than the results in this paper. Wu et al. (2009) got a -3.2% relative bias with a standard deviation of 20.7% when comparing N_mF_2s between COSMIC and 62 global ionosondes from SPIDR using data from July 2006 to December 2007. Yue et al. (2011, 2013) suggest that the ability to retrieve N_mF_2 using the Abel inversion technique has an uncertainty about 10%. Based on the linear fitting equation between CSES and COSMIC and error propagation rules, we can deduce that the relative errors between CSES peak values and ground-based measurements are comparable to prior studies.

As to the absolute error, Kelley et al. (2009) obtained a RMSE of $1.0 \times 10^5 / \text{cm}^3$ when comparing COSMIC data with ISR; Hajji et al. (2000) obtained a N_mF_2 RMS difference of about $1.5 \times 10^5 / \text{cm}^3$ when comparing the GPS/MET measurements with nearby ionosonde data, and Jakowski et al. (2002) also obtained a similar RMS difference of about $0.9 \times 10^5 / \text{cm}^3$ when comparing the CHAMP RO measurements to the in situ Langmuir probe data on the same satellite. Habarulema et al. (2014) suggested that all RO data sets are close to the ionosonde data within similar error margin for both mid-latitude and low-latitude regions when comparing COSMIC, GRACE and CHAMP RO data with that of ionosondes. The absolute errors of our results are much smaller than these results, indicating an extremely good agreements between CSES and COSMIC RO N_mF_2 and further confirming that CSES RO are also within the general error limit as proposed by Habarulema et al. (2014).

Better result of daytime data in this study is in accord with the conclusion obtained by Wu et al. (2009) and Yue et al. (2011). As we know, the nighttime data has a more complex spatial distribution pattern compare to daytime data although daytime data are affected by solar radiation during day time. Larger inversion error will be produced when facing uneven spatial distribution of electron density due to the spherical symmetry assumption of the Abel inversion method. The complex night time spatial distribution can also be proved by the smaller correlation distance during nighttime than that of daytime as discussed in section 3.2 (Shim et al., 2008).

Besides data obtained under geomagnetic quiet days, data obtained under geomagnetic storm conditions are also quite consistent with each other; this conclusion is also supported by the results from Hu et al. (2014). They suggested that COSMIC measurements are acceptable under geomagnetic disturbed conditions when comparing COSMIC RO data with observations from Sanya, a lower latitude ionosonde in China.

As suggested by Schreiner et al. (2007) that co-located RO soundings allow the precision of the technique to be estimated, but not the accuracy. That fact that the nearly zero bias for both daytime and nighttime data and for the overall data, the normal distribution of the data differences, as well as the extremely high correlation coefficient between CSES N_mF_2 and COSMIC N_mF_2, demonstrates that the CSES N_mF_2 data are highly consistent and identical with COSMIC measurements, even under geomagnetic storm conditions, indicating a similar precision of CSES
RO N_mF_2 data as that of COSMIC. Given the reliability (accuracy) of the COSMIC data proved by many studies, we believe that the CSES N_mF_2 measurements are also quite reliable. Since the co-located data points are globally distributed, the comparison results can be generalized to the overall CSES N_mF_2 dataset obtained so far.

3.2 Comparison of h_mF_2

The height of the maximum peak values in F2 layer, h_{mF_2}, is also a very important parameter for ionospheric studies. We therefore also compare this parameter using the corresponding COSMIC dataset.

Comparison of the h_{mF_2} values between the two sets using the same method as that by N_mF_2, the scatter plot of h_{mF_2} and the histogram of the data differences are given in Fig. 6. Data points exceeding 3 times of RMSE, shown as hollow circles in Fig. 6a, can be deleted from the selected data sets when calculation is implemented. Again, all the peak height points obtained under geomagnetic condition (red points) are within the 3σ limits as shown in Fig. 6a. It can be seen clearly from Fig. 6a that most of the outliers (hollow circles) are obviously above the dash line, which means that occasionally RO data from the CSES dataset will much overestimate h_{mF_2} values.

![Fig. 6 Scatter plot of h_{mF_2}s for CSES and COSMIC and histogram of their differences](image)

The dash line is the equal values line with a slope of 1, and the solid line is the linear fitting line. y refers to the CSES h_{mF_2}, and x COSMIC h_{mF_2}. Hollow circles are points exceeding 3 times standard deviation of data differences between matched points. Red points are peak height obtained under geomagnetic condition of $Dst<-30$ nT.

The correlation coefficient of h_{mF_2} is 0.9379, though slightly lower than that of the N_mF_2, but can also pass the significance test of confidence level 0.01, which also indicates a very good agreement between the two sets of h_{mF_2}. The mean of the h_{mF_2} data differences (CSES h_{mF_2} minus COSMIC h_{mF_2}) is 0.73 km, which indicates a slight greater h_{mF_2} for the CSES peak height values; and the RMSE is 13.02 km. h_{mF_2} data difference between the two sets is so small, which can be regarded as nearly zero bias.

Compared with N_mF_2, h_{mF_2} data fluctuate more violently. It can be seen from Fig. 6a that some data points are obviously deviated from the data cluster, or from the equal value dash line. Data points above the dash line indicate that CSES h_{mF_2}s are greater than the corresponding COSMIC data, while data points below the dash line indicate a contrary situation that the COSMIC h_{mF_2}s are greater than that of CSES. Larger errors are produced by these obviously deviated situations. In
spite of the data fluctuation, the nearly zero bias between the two sets, namely the mean data differences, are so small that it can be neglected, which is in accord with the nearly normal distribution of data differences as shown in Fig. 6b. The high correlation coefficient and the normally distributed data differences again indicate that the overall \(h_mF_2 \) data of the two sets are in a good agreement.

We also compare the daytime and nighttime \(h_mF_2 \)s and the corresponding scatter plots are given in Fig. 7. Correlation coefficient for daytime data is 0.9571, and for nighttime 0.8592. Similar as \(N_mF_2 \), daytime \(h_mF_2 \) has a better correlation coefficient.

The mean data differences for daytime \(h_mF_2 \)s is 0.62 km with a RMSE of 10.17 km; while the mean data differences for nighttime \(h_mF_2 \)s is 0.84 with a RMSE of 14.81 km. The positive means of data differences for both daytime and nighttime data indicate that the overall CSES \(h_mF_2 \)s are slightly greater than that of the COSMIC, but they are so small and can be neglected. The greater RMSE of the nighttime data indicates an obvious more fluctuating nighttime \(h_mF_2 \)s comparing to the daytime \(h_mF_2 \)s.

![Fig. 7 Scatter plot of \(h_mF_2 \) for daytime and nighttime data](image)

The bias and RMSE for overall, daytime and nighttime data are given in Table 2 for a comparison.

<table>
<thead>
<tr>
<th></th>
<th>Correlation coefficient</th>
<th>Mean (km)</th>
<th>RMSE (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.9379</td>
<td>0.73</td>
<td>13.02</td>
</tr>
<tr>
<td>Daytime</td>
<td>0.9571</td>
<td>0.62</td>
<td>10.17</td>
</tr>
<tr>
<td>Nighttime</td>
<td>0.8592</td>
<td>0.84</td>
<td>14.81</td>
</tr>
</tbody>
</table>

From the results shown in Table 2 and Table 1, it can be seen that correlation of \(N_mF_2 \) is better than that of \(h_mF_2 \) between the two sets. This result is in accord with the conclusion that the RO measurements were better in \(N_mF_2 \) than in \(h_mF_2 \) (Chuo et al., 2011). Another point is that daytime \(h_mF_2 \)s are in better agreement than the nighttime data, which is similar as that of \(N_mF_2 \) data.

The overall comparison results of \(h_mF_2 \) are very good when comparing to prior validation studies using ionosondes observations. Chuo et al. (2013) reported an \(h_mF_2 \) agreement about 0.87 using observations in low latitude south hemisphere from May 2006 to April 2008. Krankowski et al. (2011) got a correlation coefficient of 0.949 when comparing COSMIC \(h_mF_2 \) data observed in 2008 with that from ionosondes in European mid-latitudes. Our result is consistent with their
results, which further proves that CSES h_mF_2s are consistent and reliable with ionosondes observations.

Krankowski et al. (2011) also obtained a bias of 2.8km and a standard deviation of 11.5km for the COSMIC h_mF_2 data. Cherniak and Zakharenkova (2014) showed that COSMIC h_mF_2s were in a good agreement with Kharkov ISR observations of different seasons in 2008-2009, and bias and standard deviations are less than 24 km and 29 km respectively. Habarulema et al. (2014) obtained an error limit about 30km when comparing COSMIC h_mF_2s with mid-latitude ionosonde using data in 2008. Yue et al. (2011) suggested that the retrieval uncertainty in h_mF_2 is about 10km for COSMIC simulation analysis. The nearly zero bias and the small RMSE between h_mF_2 of CSES and COSMIC demonstrate that F region peak height parameter obtained by CSES and COSMIC are extremely similar with each other, we therefore deduce that error between CSES h_mF_2 and ionosondes h_mF_2 is comparable to prior results according to error propagation rules.

As a result, the significant correlation coefficient indicate the consistent variations between CSES h_mF_2s and h_mF_2s, and the nearly zero bias and the comparable error limits to prior studies further indicate that CSES RO inverted h_mF_2s are reliable considering the reliability of COSMIC RO data validated by previous studies.

3.3 Comparison of EDPs

 Besides the two most important parameters N_mF_2 and h_mF_2, electron density profiles (EDPs) are also very important because EDPs can provide electron densities at different altitudes to depict ionospheric 3D images from the bottom of ionosphere to the altitude of LEO satellite.

 As EDPs from CSES and COSMIC have different altitudes due to the different satellite altitudes of the two missions, only data under the altitude of the CSES satellite can be compared from the co-located profiles. We therefore compare the inverted data at some special altitudes as the numbers of data points are not identical for each matched profile pairs, and altitudes of each inverted data are not identical for the two co-located profile pairs either.

 For each altitude specified in section 2.3, we calculate the correlation coefficients using all the matched data points at that altitude and the results are given in Table 3. Fig.8 gives the scatter plots of all these altitudes, and data obtained in geomagnetic date are shown in red points, also shown in the figure are the linear fitting equations, goodness-of-fit coefficients, and numbers of data points involved in the calculation. Outliers are eliminated from the data sets using the same criteria mentioned above.

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Correlation Coefficient</th>
<th>Absolute error</th>
<th>Mean relative data differences</th>
<th>Relative RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean data difference</td>
<td>RMSE</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.9749</td>
<td>-0.01982×10^5</td>
<td>0.8824×10^5</td>
<td>-1.716%</td>
</tr>
<tr>
<td>450</td>
<td>0.9882</td>
<td>-0.01551×10^5</td>
<td>0.1070×10^5</td>
<td>-0.6894%</td>
</tr>
<tr>
<td>400</td>
<td>0.9929</td>
<td>-0.01923×10^5</td>
<td>0.1314×10^5</td>
<td>-0.5888%</td>
</tr>
<tr>
<td>350</td>
<td>0.9927</td>
<td>-0.02274×10^5</td>
<td>0.1946×10^5</td>
<td>0.7397%</td>
</tr>
<tr>
<td>300</td>
<td>0.9908</td>
<td>-0.01881×10^5</td>
<td>0.2700×10^5</td>
<td>1.893%</td>
</tr>
<tr>
<td>250</td>
<td>0.9874</td>
<td>-0.03198×10^5</td>
<td>0.3309×10^5</td>
<td>4.698%</td>
</tr>
<tr>
<td>200</td>
<td>0.9691</td>
<td>-0.01090×10^5</td>
<td>0.3909×10^5</td>
<td>25.83%</td>
</tr>
</tbody>
</table>
All the correlation coefficients in Table 3 can pass the significance test of confidence level 0.01, which means that data points at different altitudes are highly correlated. When combining all the results together, we can deduce that the co-located profiles from CSES and COSMIC sets are quite similar to each other in spite of the global distribution of these profile pairs as shown in Fig. 2 in Section 2.2. According to some studies, COSMIC profiles are in very good agreement with observations from different ISRs (Lei et al., 2007; Kelley et al., 2009; Cherniak and Zakharenkova, 2014). Pedatella et al. (2015) compared COSMIC RO data at different altitudes with in situ observations from CHAMP and C/NOSF and obtained the correlation coefficients are greater than 0.90, proving the consistency of the COSMIC profiles with in situ satellite observations. Based on the high consistency between CSES and COSMIC profiles and prior COSMIC validation studies, we can deduce that CSES profiles are generally agree with ISRs profiles according to similarity transitive rules mentioned above (Langford et al., 2011).

Schreiner et al. (2007) showed that RMS is about 10^3/cm3 between 150 to 500km altitude, whereas below 150km the RMS increases to a maximum of about 3×10^3/cm3 at about 100km, when comparing the RO profiles from different COSMIC satellites within 5km distance. Comparing COSMIC profiles with ISR observations, Lei et al. (2007) suggested inversed errors are larger than 10^3/cm3 at altitudes below ~150km and Cherniak and Zakharenkova (2014) obtained an error range of 12-16 $\times 10^4$/cm3. Pedatella et al. (2015) obtained an overall bias of 0.22×10^5/cm3 with a standard deviation of 0.65×10^5/cm3, and relative bias and standard deviation are 14.9% and 10.4% respectively, when validating COSMIC data at different altitudes using CHAMP in situ observations; they also compared COSMIC data with C/NOSF in situ observations, and got a relative bias of 5.6% with a standard deviation 12.4%. They attributed the better agreement with in situ observations from C/NOSF to the higher altitude of this satellite. Both the absolute and relative errors, as well as error variation with altitudes shown in Table 3, are in accord with those studies, suggesting that the CSES EDPs are reliable and within general error limits due to the high similarity and consistency between CSES and COSMIC EDPs.
From the correlation coefficients given in Table 3, it can be seen that correlation coefficients above 200 km are obviously greater than those below this altitude. The absolute mean differences at different altitudes are comparable to each other. However, relative differences at different altitudes are quite different; relative mean differences above 200 km are extremely small, while relative mean differences below this altitude (including this altitude) increase dramatically. We obtained from Fig. 5 that the peak heights $h_m F_2$ of most profiles are located between 200 km to 350 km, the obviously high correlation coefficients in these regions indicate that RO inverted data at and above peak height are more consistent with each other, whereas discrepancies between the two data sets below the peak regions are much larger. This can be explained by the distribution characteristics of the different ionospheric layers, and by the spherical assumption used in Abel inversion method. As we know, electron density fluctuations in regions above the F2 peak become smaller under geomagnetic quiet conditions if comparing with that at lower altitudes due to the relative lower density according to electron density attenuation rules, it is therefore easier to satisfy the spherical symmetry assumption when using the Abel inversion method in this region. This spherical symmetry assumption is by far the most significant error source in the retrieval of the electron density profiles (Lei et al., 2007). In addition, a shorter propagating distance in the topside ionosphere for the radio signals from GPS to LEO will lead to a smaller error of straight line propagation assumption. As suggested by Liu et al. (2010) that COSMIC RO can obtain reasonable correct electron densities around and above F2 peak; however, assumption of spherical symmetry.
introduces artificial plasma cave and plasma tunnel structures as well as electron density enhancement at the geomagnetic equator at and below 250 km altitude, which will enlarge data discrepancies as shown in Table 3. Syndergaard et al. (2006) also suggested larger errors at the bottom of the retrieved profiles. The results shown in Table 3 in this study are in accord with those studies, demonstrating that CSES EDPs have larger errors for data below 200km altitude, which is similar as that of COSMIC.

An obvious characteristic shown in Table 3 is that all the means of data differences are negative values though they are very small compare to the original measurements, which means the overall CSES data at different altitudes are smaller than the corresponding COSMIC data. The all negative mean data differences at different altitudes may indicate a possible systematic bias between the two measurements. This systematic lower values at all altitudes is most likely caused by the first-order estimation of the electron density at the altitude of the CSES satellite, rather than the spatial differences of the co-located profile pairs, because spatial differences lead to random errors.

However, further confirmation of this error sources is required. It is also necessary to point out that the signs of the mean relative data differences at altitudes ≥400km are negative, similar as the signs of the corresponding absolute errors; whereas the signs of the mean relative data differences at altitudes below 400km are positive, just on the contrary to the signs of absolute mean data differences. Further analysis shows that the opposite signs are caused by points where CSES data are much larger than that of COSMIC, and thus lead to extremely larger relative errors, which further indicates that data below the peak regions, especially below about 150km, fluctuate more violently.

Besides spherical symmetry and straight line propagation assumptions, the larger discrepancies at altitudes below peak regions can be explained by the different spatial locations of the matched profiles. Although the peak values of co-located profile pairs are near each other according to selection criteria, data points other than peak values on the matched profile pairs may exceed the selection criteria and result in larger distances due to the different tangent point path of the matched profile pairs. As a result, a larger distance will lead to larger discrepancy between the corresponding data sets. In addition, the tangent point path of the matched profiles may have different directions, which will lead to different inversion results because each inversed data represents average electron densities along the radio ray path. In regions with large horizontal gradients, the different ray path can cause obvious difference between the matched profiles. At altitudes below 200km, especially below 150 km, sporadic E-layers can cause large horizontal gradients, and then lead to large inversion error. Wu et al. (2009) suggested that the large relative error below 150 km is due to the errors transferred from upper altitude (the F layer) and the very small electron density at that altitude. They also suggested that the larger ray separations can induce larger errors which can be transferred to low altitudes; phase measurement errors induce small relative fluctuations on the electron density at the topside ionosphere, but can cause large relative fluctuations at low altitude ionosphere, because small electron density at low altitude is sensitive to the phase errors. It is therefore concluded that many sources can cause large errors for measurements at altitudes below 150km, which as a result lead to the large discrepancies between CSES and COSMIC RO data at the bottom of the ionosphere.

Based on the above analysis, we conclude that CSES profiles are generally consistent with COSMIC data very well and are reliable for data applications. However, larger discrepancies are found at lower altitudes between the two sets comparing to data differences at higher altitudes.
Therefore, special attention should be paid to data below 200km in applications due to the relative large discrepancies between the two datasets.

4. Summary and Conclusions

Validation of the CSES RO data is carried out to estimate the consistency and reliability of the CSES RO data using the globally distributed measurements from the COSMIC mission covering the date range from February 12, 2018 to March 31, 2019 as COSMIC RO data have been widely validated their consistency and reliability using data from different measurements in global scale.

Comparing CSES \(N_mF_2 \), \(h_mF_2 \), and EDP data at some special altitudes, with corresponding COSMIC RO data, we obtain the following results.

(1) CSES \(N_mF_2 \) data are highly consistent with that from COSMIC with a correlation coefficient of 0.9891. The mean data differences is \(0.01235 \times 10^3/cm^2 \) with a RMSE of \(0.3680 \times 10^3/cm^2 \); the relative mean differences is 2.1% with a relative RMSE of 16.4%. Correlation between daytime \(N_mF_2 \) data is obviously better than that of nighttime \(N_mF_2 \) data.

(2) CSES \(h_mF_2 \) data are also very consistent with COSMIC data, with a correlation coefficients of 0.9379. The bias between the two sets is 0.73 km with a RMSE of 13.02km. Again, daytime \(h_mF_2 \) has a better correlation than nighttime data.

(3) Co-located profiles between CSES and COSMIC are generally consistent with each other very well, with a better agreement for data at and above peak height regions (200km) than those below this regions. For EDP data below 200 km altitude, special attention should be paid due to the relative large discrepancies between the two sets.

(4) Based on the results of comparing COSMIC data with data from different measurements, it is deduced that CSES RO data are within the error limits obtained by previous studies according to error propagation rules.

GOX payload onboard CSES satellite can obtain over 500 occultation events each day, which provide a large dataset for the study of 3D distribution of the ionospheric electron density when combining with the in situ electron density measurements obtained by LAP onboard CSES. The relatively thorough comparison work in this paper demonstrates that the CSES RO data are consistent very well with the corresponding COSMIC data, proving that the CSES RO data are reliable for applications on ionospheric-related problems. However, as many RO related studies suggest that asymmetry of electron density distribution is the main source of the Abel inversion transformation (Schreiner et al., 1999; Syndergaard et al., 2006; Lei et al., 2007), and this inversion error varies with solar activity, season, geomagnetic latitude and local time (Wu et al., 2009). The CSES RO data in this study cover all the latitudes and four seasons with fixed local time under lower solar activity condition, and solar activity in this study is similar as most of the COSMIC validation studies, the comparison results will therefore applicable to data with similar low solar activity conditions. More subsequent validation work will be conducted and presented using data accumulated under different solar activities.
Acknowledgement

COSMIC Radio Occultation data were downloaded from ftp://cdaac-ftp.cosmic.ucar.edu/cosmic/level2/lonPrf/. This research was supported by the National Key R&D Program of China (Grant no. 2018YFC1503505), and by the Institute of Crustal Dynamics, China Earthquake Administration (Grant no. ZDI2018-18).

Reference

