The increase of curvature radius of geomagnetic field lines preceding a classical dipolarization

Osuke Saka
Office Geophysik, Ogoori, 838-0141, Japan

Abstract
Based on assumptions that substorm field line dipolarization at geosynchronous altitudes is associated with the arrival of high velocity magnetotail flow bursts referred to as Bursty Bulk Flows, we propose following sequence of field line dipolarization: (1) Slow magnetoacoustic wave excited through Ballooning instability by enhanced inflows in pre-onset intervals towards the equatorial plane; (2) In the equatorial plane, slow magnetoacoustic wave stretching of the flux tube in dawn-dusk directions resulting in spreading plasmas in dawn-dusk directions and reduction in the radial pressure gradient in the flux tube. As a consequence of the foregoing processes, the flux tube assumes a new equilibrium geometry in which curvature radius of new field lines increased in the meridian plane suggesting an onset of field line dipolarization. The dipolarization processes associated with changing the curvature radius preceded classical dipolarization caused by reduction of cross-tail currents and pileup of the magnetic fields.

Increasing curvature radius induced convection surge in the equatorial plane as well as inductive westward electric fields of the order of mV/m. Electric fields transmitted to the ionosphere produce electromotive force in the E layer for generating field-aligned current system of Bostrom type. This is also equivalent to the creation of an incomplete Cowling channel in the ionospheric E layer by the convection surge.

1. Introduction
Substorms are spatially localized and temporarily variable processes in the nighttime magnetosphere. It is often difficult to determine onset timing of substorm processes such as magnetotail flow burst, field line dipolarization, and particle injections. To resolve the timing uncertainties, auroras in global satellite images [Nakamura et al., 2001; Miyashita et al., 2009], intensifications of auroral kilometric radiation [Fairfield et al., 1999; Morioka et al., 2010], and dispersionless particle injection in geosynchronous orbit [Birn et al., 1997] were used. Ground Pi2 pulsations are another useful tool for determination of the substorm timing.
Particularly, Pi2s in equatorial region exhibited small phase difference (m<1, m denotes azimuthal wave number) across widely separated stations in the equatorial countries [Kitamura et al., 1988], minimizing the timing uncertainties arising from delays in longitudinal propagations. This enabled us accurate onset timing study of substorms using magnetometer data from two remote locations, geosynchronous altitudes and ground stations of the equatorial countries [Saka et al., 2010].

In this study, we focus on the dipolarization events at geosynchronous orbit from growth to expansion phase. Triggering mechanisms of the field line dipolarization in the vicinity of geosynchronous orbit are our major concern. In this paper, onset timing study of substorms using magnetometer data from equatorial countries are summarized in Sect. 2. In Sect. 3, we present a pre-onset scenario leading to the dipolarization onset. In Sec.4, excitation of slow magnetoacoustic wave is discussed for triggering field line depolarization. We will focus on the field line dipolarization in the vicinity of geosynchronous orbit in Sect. 5. A coupling of magnetosphere and ionosphere associated with this dipolarization scenario will be presented in Sect. 6. In Sect. 7, we present a triggering mechanism of low latitude Pi2s that enabled the Pi2-based epoch analyses. Summary and discussion of this scenario is given in Sect. 8.

2. Summary of onset timing study using ground Pi2s at the equator

In this section, we summarize field line dipolarization occurring at the geosynchronous orbit based on the statistical results obtained by Saka et al. [2010]. The authors used magnetometer data from geosynchronous satellites (Goes5 and Goes6) and those at ground equatorial stations (Huancayo, Peru, 1.4°N in geomagnetic latitudes) in the conjugate meridian. Goes5 was located at higher latitudes, 10.3°N in dipole coordinates, and Goes6 was closer to the equator; 7.9°N in dipole coordinates. This difference was caused by the separated meridians of the satellites (2.2 hours of local time). The dipole coordinate used are equivalent to the HDV coordinates; H is positive northward along the dipole axis, V is radial outward, and D denotes dipole east. The field line dipolarization at the geosynchronous orbit can be characterized either by a step-like or impulsive increase of inclination angle of the geomagnetic field lines. The inclination angle is measured positive northward from the dipole equator. The step-like dipolarization was observed by Goes5 located at higher latitudes, while the dipolarization pulse was observed by Goes6 at latitudes closer to the equatorial plane. The onset of field line dipolarization preceded the initial peak of the ground Pi2 pulse by two minutes, suggesting that the onset was initiated in association with the first increase of the Pi2 amplitudes. Following the dipolarization onset, field line magnitude decreased at the
geosynchronous orbit, and field lines deflected westward in the dawn sector and eastward in
the dusk sector (see Figure 1 for dawn-dusk deflection, reproduced from [Saka et al., 2010]).
This is caused by the dawn-dusk expansion of the plasma flows occurring tailward of the
dawn-dusk expansion of the plasma flows occurring tailward of the
geosynchronous orbit. These longitudinal expansions lasted for about 10 min and decreased
the field magnitudes therein. Expansion in the dusk sector, however, continued over this
characteristic 10-min-interval. Asymmetries of the dawn-dusk expansion may be caused by
diamagnetic drifts in the plasma sheet [Liu et al., 2013]. It is suggested that classical
dipolarization, caused by the reduction of cross-tail currents in the midnight magnetosphere,
happened after the nightside magnetosphere experienced this characteristic 10-min-interval.
For this reason, the first 10 min intervals are referred to as transitional state of substorm
development [Saka et al., 2010].

3. Pre-onset intervals leading to field line dipolarization
In the pre-onset intervals, decrease of the field line inclination started two hours prior to the
dipolarization onset. It attained minimum angles (33.6° for Goes5 and 49.4° for Goes6 in
dipole coordinates) right before the dipolarization onset [Saka, 2010; 2019].
One of the properties of plasmas in pre-onset intervals are continuing inflows of lobe plasmas
towards the equatorial plane [Birn and Hesse, 1996], Poynting flux enhancement [Machida et al., 2009], and Ey (westward electric fields) penetration toward the equatorial plane
[Machida et al, 2014]. Corresponding plasma properties at geosynchronous altitudes may be
predominant perpendicular temperature anisotropies of thermal plasmas (30 eV - 40 keV)
obtained from three-dimensional temperature matrix and their gradual decrease towards the
onset [Birn et al., 1997]. At the onset, however, increase of parallel anisotropy stopped and
perpendicular anisotropy increased again. Such changes of temperature anisotropy at onset
were observed in roll-angle spectrogram of energy flux of electrons in 15 eV-40 keV [Saka and
Hayashi, 2017]. This transition of the temperature anisotropies may be accounted for by the
following scenario.
A continuing tailward stretch of the field lines in the pre-onset intervals as depicted in Figure
2 may increase equatorward flux by the counterclockwise rotation of the inflow vectors ($F_\perp$)
in the north of the equatorial plane (clockwise rotation in the south) and produce a parallel
component as well by the relation,

$$\delta F_{\|} = F_\perp (\omega \cdot \delta t)$$

(1)
Here, \( \delta F_{\parallel} \) denotes increase of parallel flux per time, \( \delta t \), \( \omega \) is angular velocity of rotation of \( F_{\perp} \) vectors associated with the thinning of the flux tubes caused by stretching. In pre-onset intervals lasting 90 min at geosynchronous altitudes, field line stretching decreased the field line inclination by \( 7^\circ \) from \( 40.6^\circ \) to \( 33.6^\circ \) [Saka, 2019]. This gives angular velocity of rotation of field line inclination in equation (1) as \( 1.4 \times 10^{-3} \text{ rad/ min} \). Total parallel flux gained in T min may be given by the integral of equation (1) with time from 0 to T. Substituting \( T=60 \text{ min} \) and \( 1.4 \times 10^{-3} \text{ rad/ min} \) for angular velocity of field line inclination, this yields \( F_{\parallel} = 8.2 \times 10^{-2} F_{\perp} \). Gain of \( F_{\parallel} \) is about 10% of the perpendicular flux (\( F_{\perp} \)). This is consistent with the parallel temperature anisotropies gained prior to the onset (20% gain) in geosynchronous orbit [Birn et al., 1997].

Continuing parallel flux flows associated with the flux tube stretching in the pre-onset intervals may increase plasma pressures in the flux tube at its tailward end. This condition leads to further stretching of the flux tube (small curvature radius) [Ohtani and Tamao, 1993; Rubtsov et al., 2018] by the relation,

\[
\frac{\beta}{2} \kappa + \kappa_{\parallel} + \frac{1}{R} = 0 \quad (2)
\]

Here, \( \beta \) is plasma to magnetic pressure ratio, \( \kappa \) and \( \kappa_{\parallel} \) denote reciprocal spatial scales of radial inhomogeneity of plasma pressure and magnetic fields in the equatorial plane, respectively. R is curvature radius of the field lines.

4. Excitation of slow magnetoacoustic wave

The continuing parallel flows may excite magnetoacoustic wave. From a set of linearized MHD equations we have relation between parallel displacement along the field lines (\( \xi_{\parallel} \)) and divergence of perpendicular displacements (\( \xi_{\perp} \)) in the following form (see Appendix),

\[
\xi_{\parallel} = \frac{C_s^2}{\omega} F \cdot B_0 \frac{\partial}{\partial z} (\text{div} \xi_{\perp}) \quad (3)
\]

Here, \( C_s \), \( \omega \) and \( B_0 \) are the sound velocity, angular frequency of waves and background field magnitudes, respectively. \( F \) is given by
\[
F = \frac{C_A^2}{B_0^2} \frac{1}{C_s^2 - \left(\frac{\Omega}{k}\right)^2}
\]  

(4)

\(F\) is positive for the slow magnetoacoustic wave and negative for the fast magnetoacoustic wave. \(C_A\) and \(k\) denote Alfvén velocity and wave vector, respectively. We use equation (3) for the classification of slow and fast magnetoacoustic waves. Slow magnetoacoustic wave yields perpendicular expansion of the flux tubes at the converging point of parallel flows on the equatorial plane. For fast wave, perpendicular shrinkage of flux tubes occurs at the converging point of parallel flows (equatorial plane).

The equation (3) will be applied to simulate possible effect of magnetoacoustic wave on pitch angle spectrogram. For this, we used drift Maxwell distributions for phase space density (PSD) assuming gyrotropy for particle trajectories. PSD was composed of three parts: one drifting parallel, another anti-parallel along the field lines, and the third part perpendicular to the field lines. Figure 3(A) shows pitch angle spectrogram of energy flux with no drift velocities either perpendicular or parallel to the background field lines. Energy flux is defined by

\[
\left(\frac{2E^2}{m^2}\right)f\ ,
\]

where \(E\), \(m\), \(f\) are energy, mass of particles, and phase space density, respectively. Energy flux is given in \(\text{eV} / (\text{cm}^2\cdot\text{s} \cdot \text{sr} \cdot \text{eV})\). Only parallel drift increased in from 0.3\(V_{\text{th}}\), 0.6\(V_{\text{th}}\), and to 1.0\(V_{\text{th}}\) as shown in B, C, and D. For E and F, perpendicular drift increased to 0.3\(V_{\text{th}}\) and 0.5\(V_{\text{th}}\) while parallel drift remained at 1.0\(V_{\text{th}}\). Energy fluxes initially in quasi trapped distribution (A) changed to more parallel and anti-parallel fluxes as parallel and anti-parallel drift increased (B, C, and D). Increasing perpendicular drifts increased perpendicular fluxes in the pitch angle distributions of E and F.

We clarified that magnetoacoustic wave produced coupling of parallel flux along the field lines and the perpendicular flux. However, we choose slow magnetoacoustic wave for the wave mode because the flux tubes expanded (did not shrink) in the transitional interval as discussed in Section 2. Slow magnetoacoustic wave may be triggered through Ballooning instability, when enough pressure gradient is accomplished in an earthward direction [Ohtani and Tamao, 1989; Rubtsov et al., 2018].

We can estimate the Ballooning instability threshold \(\kappa\) (reciprocal scale of radial inhomogeneity of plasma pressure) using calculation results given in [Rubtsov et al., 2018]. In a distance from L=5 to 10\(R_e\), instability threshold is given approximately as \(\kappa = -1.0 \re^{-1}\) (\(\kappa\) denotes reciprocal spatial scale of radial inhomogeneity of plasma pressure, and \(R_e\) is the Earth radius) for beta defined by the ratio of plasma pressure and magnetic pressure exceeding 0.1. This suggests that the Ballooning instability develops at the geosynchronous altitudes (curvature radius \(R\) is 2.2 \(R_e\)) when spatial scale of the earthward pressure gradient
caused by the inflows becomes steeper than 1.0 Re. We show in the following section that this theoretical consideration matched observations.

5. Field line dipolarization in the vicinity of geosynchronous orbit

5.1 Relaxation of radial inhomogeneity

We can assume the westward electric fields in Dipolarization Front (DF) [Runov et al., 2011] embedded in the leading edge of Bursty Bulk Flow (BBF) as external stimulus for triggering Ballooning instability. In this case westward electric fields in the DF temporarily amplified the parallel flux flowing towards the end point of the flux tube in the equatorial plane and further steepen earthward pressure gradient. If it exceeds instability threshold determined by $\beta$ and initial curvature radius $R$, slow magnetoacoustic wave can be excited [Rubtsov et al., 2018]. Once the slow magnetoacoustic wave was excited, perpendicular fluxes spread the plasmas in dawn-dusk directions and smooth (or relax) the radial gradient of plasma pressures in the equatorial plane (smaller $\kappa$). This may result in the transition of the flux tube geometry to a new configuration, an increase of the curvature radius of the field lines (larger $R$) (see equation (2)).

We revisit multiple Pi2 events observed by AMPTE CCE on 31 August 1986 [Saka et al., 2002] and show an example of relaxation of radial inhomogeneity of plasma pressures associated with field line dipolarization in Figure 4. The satellite passed the midnight sector (20 – 23 MLT) from 3 Re to 7 Re at latitudes south of the equatorial plane (−8° MLat) when multiple Pi2 event (with positive bay) were observed at low latitude station (KUJ) at L=1.2 in the midnight sector (Figure 4A). Inclination angle of field lines along the satellite trajectory is shown in Figure 4(B). Dipolarization occurred as marked by vertical arrows correlating to multiple onset of Pi2s, 1 through 4 in Figure 4(A). Ion fluxes coming from dawn sector ($J_-$) and from dusk sector ($J_+$) at satellite altitudes were measured by the instruments (two energy channels, 63-85 keV and 125-210 keV) on board AMPTE CCE [Takahashi et al., 1996]. A schematic of particle measurement is shown at the top of Figure 5. The flux difference ($J_- - J_+ > 0$) increased in association with the onset of multiple Pi2 (15:05 UT) and positive bay at KUJ (Figures 4C and 4D). Sudden increase was followed by the slow decrease of flux in 63-85 keV channel and rapid decrease of flux in 125-210 keV channel. The flux difference, $J_- > J_+$, may be caused either by earthward pressure gradient or...
westward convection of plasmas. From the different patterns of the flux decrease with time in two energy channels, we can suggest that the measured flux difference, $J_\perp - J_\parallel$, can be attributed to increase of the earthward pressure gradient and succeeding relaxation. Note that guiding center of $J_\perp / J_\parallel$ is earthward/tailward of the satellite position as depicted in top of Figure 5. The different relaxation speed in two energy channels, slower for 63-85 keV and faster for 125-210 keV, suggest that the earthward pressure gradient (assumed to be proportional to the flux gradient) decreased with time during the multiple Pi2 event (Figure 5). The flux difference (50 counts/sample) was 10% of the background flux both for 63-85 keV (Larmor radius is 250 km for 150 nT) and for 125-210 keV (Larmor radius is 450 km), that is, the flux level differed by 10% at two locations 1000 km apart in radial distance for 63-85 keV and 1800 km for 125-210 keV. This gives e-folding scale of the earthward pressure gradient being 0.98 Re and 1.77 Re for 63-85 keV and 125-210 keV, respectively. The 31 August event shows that radial pressure gradient was relaxed in the inner magnetosphere in association with the increase of the field line inclination (dipolarization). Although the field line dipolarization showed a sharp onset in satellite magnetometer data, we note that it did not occur in ion flux data. This may be true because the ion flux change at the onset may be obscured by the contamination from the past onsets transported across the field lines from the adjoining sector by the electric fields and gradient/curvature drifts. We conclude that the relaxation of spatial inhomogeneity started when the spatial scale of the radial inhomogeneity approached 1.0 Re, consistent with theoretical consideration of Ballooning instability by Rubtsov et al (2018).

5.2 Flux tube transition to a new geometry

Meanwhile, field lines in the further earthward locations may be compressed by the inward movement of the outer field lines. This process associated with the dipolarization onset may increase the parameter $\kappa_B$ in equation (2) which may result in transition to a new geometry of earthward field lines, a decrease of the curvature radius $R$. Transition of the field line geometries for onset locations and ones in earthward locations are schematically illustrated in Figure 6. These field line geometries in meridian plane matched the third harmonic and fundamental harmonic deformations of outer and inner field lines, respectively. This is often observed in the midnight magnetosphere in the initial pulse of Pi2s [Saka et al., 2012]. Transitions of the flux tube geometry in magnetosphere also correspond to the production of negative bay in higher latitudes and positive bay in lower latitudes. If we can assume that negative bay switched to positive bay at latitudes, 60 degrees in geomagnetic coordinates...
for examples, this latitude can be mapped beyond the geosynchronous orbit (L~7 Re or further tailward) as field line dipolarization occurs along the stretched flux tubes. Consequently, this scenario requires that the BBFs are not necessary to reach inner magnetosphere to trigger the substorm onset at lower latitudes. In the inset, flux tube deformations are illustrated in the equatorial cross section at onset locations (field lines 1 and 2). Divergence of perpendicular flows (solid arrows) produced dawn-dusk expansion of flux tube (2) and the shrinkage of stretched flux tube (1) by relaxation of the radial inhomogeneity. Flux tube deformation from 1 to 2 tended to preserve the total magnetic fluxes in the equatorial cross section. From the local time distribution of the dawn-dusk expansion of the flux tubes shown in Figure 1, most of the flux tube transition such as from 1 to 2 may occur tailward of geosynchronous orbit. Some of the events, however, may happen earthward of the geosynchronous orbit [i.e., Ohtani et al., 2018].

Increasing of the curvature radius, or earthward shrinkage of the flux tubes, produce a reduction of the radial component of the field lines (V in dipole coordinates) by adding positive V in the north of the equatorial plane and negative V in the south. If amplitudes of the V component changed by 10 nT in one minute, the expected inductive electric fields (westward) could be of the order of 1.0 mV/m when shrinkage was confined within 1 Re from the equatorial plane. The dawn-dusk expansion of the flux tubes may also produce inductive electric fields (earthward and tailward in dawn and dusk sector, respectively) of the same order of magnitudes. They are Alfven waves, a wave mode in Ballooning instability coupled with slow magnetoacoustic wave [Rubtsov et al., 2018]. The westward electric fields produce earthward flow bursts referred to as convection surge. The inductive electric fields produced by the dipolarization are the same order of magnitudes observed in DF [Runov et al., 2011].

6. Coupling of magnetosphere and ionosphere in association with field line dipolarization
The inductive electric fields may be transmitted along the field lines as poloidally and toroidally polarized Alfven waves [Klimushkin et al., 2004]. These electric fields produce a dynamic ionosphere in polar region that includes nonlinear evolution of ionospheric plasmas (poleward expansion), as well as production of field-aligned currents and parallel potentials by exciting ion acoustic wave in quasi-neutral condition [Saka, 2019]. It is not the aim of this paper to describe in detail the dynamic processes in the ionosphere, but to show a local production of currents in the ionosphere as well as field-aligned currents by the penetrated electric fields. For this purpose, we revisit the 10 August 1994 substorm event studied by Saka and Hayashi (2017). In this event, eastward expansion was observed of the field line dipolarization region, started at 11:55 UT (00:27 MLT) from 260° E of geomagnetic longitudes
and expanded to 351° E in about 48 min. At the leading edge of the expansion, ground magnetometer data showed bipolar event (quick change of the D component from positive to negative in about 5 min), being confined in the expanding dipolarization front as a substructure. The substructure in the leading edge of the field line dipolarization will be examined as follows.

We can assume that magnetic signals on the ground are associated with the sum of the horizontal Hall currents in the ionosphere [Fukushima, 1971]. These currents can be calculated by the relation,

\[
(\text{rot} \mathbf{J})_z = -\frac{1}{\mu_0} \nabla^2 B_z
\]

We used the ground vertical component \(B_z\) as a proxy of \(B_z\) in the ionosphere. The second derivative in right-hand side of equation (5) is approximated as,

\[
\nabla^2 B'_z = \left(\frac{b_{i+1} - b_i}{L_{i+1} - L_i} - \frac{b'_i - b_{i-1}}{L_i - L_{i-1}}\right) / (L_{i+1} - L_{i-1})
\]

Here, \(i\) denotes i-th station in the meridian chain. \(L_i\) is the geomagnetic latitude of the i-th station. We considered meridional change only. This is because the vertical component changed from negative to positive across the meridian, while in longitudes it changed simply decreasing or increasing in lower and higher latitudes after onset, respectively. Hence, longitudinal variations may contribute less to the Laplacian. The results reproduced from Saka and Hayashi (2017) are shown in Figure 7(A). The eastward propagation of dipolarization front crossed this meridian (300° E) at 12:13 UT corresponding to the interval labelled 1. Two points arose from this figure; (1) Loop of Hall current pair existed, CCW viewed from above the ionosphere in the lower latitudes and CW in the higher latitudes, (2) These current patterns expand poleward. Current patterns in the interval from 1 to 5 in Figure 7(A) are illustrated in Figure 7(B) to facilitate the poleward expansion. It is clearly demonstrated that current pair forming CW in higher latitudes and CCW in lower latitudes expanded in time towards the pole. Bipolar change can be recorded in the D component data (not shown) when the ground station, FSIM in this case, passes from segment 1 to 2 in Figure 7(B). As a result, dipolarization front expanded eastward progressively by producing the poleward expansion at each meridian. The front left behind the current pattern comprising upward field-aligned currents in lower latitudes and downward in higher latitudes, or Bostrom type current system. We propose that the ionosphere itself has inherent electromotive force to drive this Bostrom type current system. The reasons are as follows.

In the E region, drift trajectories may be written [Kelley, 1989] for electrons by,
\[ U_{e\perp} = \frac{1}{B} [E \times \hat{B}] \quad (7) \]

and for ions by,

\[ U_{i\perp} = b_i [E + \kappa_i E \times \hat{B}] . \quad (8) \]

Here, \( b_i \) is mobility of ions defined as \( \Omega_i / (B \nu_{in}) \), \( \kappa_i \) is defined as \( \Omega_i / \nu_{in} \). Symbols \( \Omega_i \) and \( \nu_{in} \) are ion gyrofrequency and ion-neutral collision frequency, respectively. \( \hat{B} \) denotes a unit vector of the magnetic fields \( B \). We assumed that \( E \times \hat{B} \) drifts for electrons and ions were driven by westward electric fields transmitted from the convection surge. Because of very low mobility of ions in E layer (\( \kappa_i = 0.1 \)), electric field drifts accumulate electrons (not ions) in lower latitudes and produce stronger secondary southward electric fields in the ionosphere. The southward electric fields produced southward motion of ions due to the first term of equation (8). They carry Pedersen currents (ion currents) for producing quasi-neutrality of ionosphere. \( \mathbf{E}_{\parallel} \times \hat{B} \) drifts caused by the transmitted westward electric fields \( (\mathbf{E}_{\parallel}) \) may propel electrons against southward electric fields from higher latitudes to lower latitudes as electromotive force to maintain the potential drop for driving Pedersen currents. This means the ionospheric E layer contains both generator and load in it. In quasi-neutral condition, a small imbalance of particle densities of electrons and ions \( (n_e - n_i \sim 10^2 \text{ m}^{-3}) \) may induce in lower latitudes negative potential region of the order of -100 kV with horizontal scale length of 100 km. To sustain this negative potential, upward field-aligned currents of the order of \( 1.0 \mu A / m^2 \) for \( \Sigma_p \sim 10^9 S \) must flow. Downward field-aligned currents from the positive potential regions in the higher latitudes may also be expected. It is supposed that upward field-aligned currents may be carried mostly by ions flowing outwards and downward currents are escaping electrons to the magnetosphere. Those ions and electrons escape from the ionosphere into the magnetosphere to assure quasi-neutral conditions of the ionosphere. The above scenario may be adapted to a creation of the incomplete Cowling channel [Baumjohann, 1983], where unbalanced primary northward Hall currents and secondary southward Pedersen currents driven by the polarization electric fields yielded field-aligned currents.
7. Triggering mechanisms of low latitude Pi2s

From ground magnetometer observations in auroral zone, it is natural to assume that flux tubes linked to negative bay (decreasing of the H component) and positive bay (increasing of the H component) at higher and lower latitudes, respectively, oscillated coherently at Pi2 periods. Oscillating flux tubes associated with positive bay may produce local compression of magnetic fields in the equator and trigger cavity mode in low latitudes [Takahashi et al., 1995]. Oscillations, however, are short-lived and may not establish true cavity modes. They excite cavity/waveguide modes in the plasmasphere [Allan et al., 1996; Li et al., 1998].

In the dip-equator, a singular latitude of the cavity/waveguide mode, only isotropic mode can be excited [Allan et al., 1996]. This leads us to suppose that a very large propagation velocity (or large wavelength exceeding whole circle of the Earth) of equatorial Pi2s in the nightside sector [Kitamura et al., 1988] would be associated with the dawn-dusk asymmetries of non-propagating compressions. Pi2 periodicity may be determined primary by consecutive arrival of BBF substructures referred to as dipolarization front bundle (DFB) [Liu et al., 2013, 2014]. Repeating arrival of DFB produces periodic dipolarization or oscillation of negative bays. Positive bay oscillations in the plasmasphere would follow the negative bay oscillations to excite cavity/waveguide modes for low to equatorial Pi2s at the same periodicities. To estimate the onset time of the field line dipolarization using the very low latitudes Pi2s, delays in transmission are from the magnetosphere; longitudinal delays across the meridian may not be significant.

High latitude Pi2s may not be caused by cavity/waveguide modes but by oscillation of field-aligned currents comprising Bostrom type current system (incomplete Cowling channel), R1 (region 1) type current system associated with convection surge [i.e., Birn and Hesse, 1996], and R2 (region 2) type current system of expanding flux tubes in longitudes [i.e., Tanaka et al., 2010]. In contrast to the very-low latitude Pi2s associated with the non-propagating compression, the high-latitude Pi2s propagated on the ground typically at 20km/s eastward and westward in the sector east and west of the substorm center, respectively [Samson and Harrold, 1985]. Propagation across the meridian may cause further delays, 35 sec for propagation of 1 hour of local time. We should exercise caution when using high latitude Pi2s for timing study.

The above scenario assumes that the DFBs arrived periodically in the inner magnetosphere at a frequency not very different than the cavity frequency of plasmasphere.
Definition of field line dipolarization is a configuration change from stretching to shrinkage of geomagnetic field lines in the midnight meridian of magnetosphere. Two models have been proposed to account for the configuration change; diversion of the cross-tail currents via ionosphere, referred to as substorm current wedge (SCW), as first proposed in McPherron et al. [1973] and extinction of the cross-tail currents by a local kinetic instability, current disruption (CD) [Lui, 1996]. These models have been adopted for many decades to account for the critical issues associated with substorm onset. We propose, based on Ballooning instability scenario, that field line dipolarization is caused by the relaxation of radial inhomogeneity of plasma pressures in association with the excitation of slow magnetoacoustic wave. Dipolarization regions expand in longitudes and decrease field magnitudes by expanding flux tubes therein. This condition continued for about 10 min and classical dipolarization caused by the reduction of cross-tail currents or pileup of the magnetic flux transported from the tail begins.

It is noted that BBFs with low entropy plasmas (plasma bubbles) often penetrated to the inner magnetosphere [Dubyagin et al., 2011]. In numerical simulations, those bubbles localized in local time produced global dipolarization in the inner magnetosphere [Merkin et al., 2019] and generated ionospheric current system such as westward electrojet, Harang discontinuity, and poleward expansion of aurora in substorm expansion phase [Yang et al., 2012]. These classical features of substorm expansion occurred in this first 10 min intervals of Pi2 onset referred to as transitional intervals in the midnight magnetosphere. The transitional intervals may be the most active periods in the substorm phase.

The proposed scenario was deduced from the geosynchronous observation and cannot be readily applied to the onset scenario beyond the geosynchronous orbit. Nevertheless, dawn-dusk expansion of the flux tubes may be a fundamental property of field line dipolarization not only at geosynchronous altitudes but also in tailward locations (8 - 12 Re) [Yao et al., 3013; Liu et al., 2013]. It is suggested that the field line dipolarization at tailward locations is subdivided by faster expanding (in longitudes) dipolarization front (DF) and slower expanding dipolarization front bundle (DFB) led by DF [Liu et al., 2015]. Such substructures in field line dipolarization are also observed at geosynchronous altitudes [Saka and Hayashi, 2017]. The geosynchronous dipolarization expanded (in longitudes) at 1.9 km/s, while Pi2s emitted in the dipolarization region propagated one order of magnitude faster. The fast longitudinal velocities associated with Pi2s may be embedded within the slowly expanding region of dipolarization, similarly to the relationship between DF and DFB. If this relationship can be adapted also to the transitional state and succeeding field line pileup, the dipolarization scenario at geosynchronous observations can be extended further tailward in upstream. Or,
the onset scenario in 10 Re can be applied in geosynchronous dipolarization. In that case, dipolarization pulse at Goes6 latitudes (7.9° N) may represents DFs. This assumption may be supported because electron energy flux pitch angle distributions in tailward locations beyond 10Re show parallel to perpendicular transitions, like ones in Figure 3, at the arrival of DF [Deng et al., 2010]. We emphasize that two different types of the dipolarization exist in the substorms; one is associated with change of curvature radius of field lines in the transitional state (faster expansion in longitudes) and the other is subsequent pileup of the magnetic flux transported from the tail (slower expansion). Field line pileup caused by the flow braking processes [Shiokawa et al., 1997] may lead to tailward regression of the dipolarization region as reported in Baumjohann et al. [1999]. In the transitional state lasting for about 10 min, the inductive electric fields pointing westward were produced in the equatorial plane. They propagated along the field lines to the ionosphere to produce meridional field-aligned currents of the Bostrom type (downward in higher latitudes and upward in lower latitudes). The Bostrom type current system was indeed observed on the ground at the front of dipolarization expanding towards east. The magnetospheric dynamo produced by earthward electric fields in the equatorial plane [Akasofu, 2003] and the E layer dynamo in the ionosphere worked together to activate the Bostrom current system.

9. Code/Data availability
Satellite data from Goes5/6, AMPTE CCE and ground magnetometer data in Figures 1, 4 and 7 is available upon request to Osuke Saka (saka.o@nifty.com).

10. Competing interest
The author declares that there is no conflict of interest.

Acknowledgements
The author would like to express his sincere thanks to all the members of Global Aurora Dynamics Campaign (GADC) [Oguti et al., 1988]. We are also grateful to anonymous referees for their critical review.

Appendix
In order to derive equations (3) and (4), we first follow Kadomtsev (1979). Linearized MHD equations may be written as,

$$\frac{\partial^2 \xi}{\partial t^2} = C_s^2 \nabla \text{div} \xi + C_A^2 \nabla \perp \text{div} \xi_{\perp} + C_A^2 \frac{\partial^2 \xi_{\perp}}{\partial z^2}. \quad (A1)$$

Here, $C_s$, $C_A$, $\xi$ denote sound velocity, Alfvén velocity, plasma displacement, respectively. $(\perp, z)$ denote perpendicular and parallel component with respect to the background field lines.

After a few manipulations of (A1), we have magnetoacoustic wave equations for finite $\beta$ plasmas:

$$\frac{\partial^2 \text{div} \xi_{\perp}}{\partial t^2} = C_A^2 \Delta \text{div} \xi_{\perp} + C_s^2 \Delta \perp \text{div} \xi. \quad (A2)$$

and

$$\frac{\partial^2 \xi}{\partial t^2} = C_s^2 \frac{\partial}{\partial z} (\text{div} \xi). \quad (A3)$$

Equations (A2) and (A3) present compressive properties across and along the background field lines, respectively.

Assuming plane harmonic wave solutions, first order quantities of density and magnetic field compressions $(\delta n, \delta B)$ may be given by the following equation.

$$\frac{\delta n}{n_0} = -\frac{C_A^2}{B_0^2} \frac{1}{C_s^2 - \left(\frac{\omega}{k}\right)^2} (B_0 \cdot \delta B) \quad (A4)$$

Here, $n_0$, $B_0$ denote background density and magnetic fields, respectively.

Substitution of (A4) into (A3) using $\text{div} \xi = -\delta n/n_0$ yields

$$\frac{\partial^2 \xi}{\partial t^2} = C_s^2 F \frac{\partial}{\partial z} (B_0 \cdot \delta B). \quad (A5)$$

Here, $F = \frac{C_A^2}{B_0^2} \frac{1}{C_s^2 - \left(\frac{\omega}{k}\right)^2}$

Linearized Faraday’s law in frozen-in condition, $\delta B = \nabla \times (\xi_{\perp} \times B_0)$, may be reduced to

$$\delta B = -B_0 \text{div} \xi_{\perp} + B_0 \frac{\partial}{\partial z} \xi_{\perp}. \quad (A6)$$

Substituting (A6) into (A5), we have final expressions relating parallel and perpendicular displacements as,
\[
\frac{\partial^2 \xi_z}{\partial t^2} = -C_s^2 F \cdot B_0^2 \frac{\partial}{\partial z}(\text{div} \xi_z). \tag{A6}
\]

Replacing \( \partial / \partial t \) with \(-i\omega\), (A6) yields the equation (3) in Section 4,

\[
\xi_z = \frac{C_s^2}{\omega^2} F \cdot B_0^2 \frac{\partial}{\partial z}(\text{div} \xi_z).
\]

References


Fukushima, N.: Electric current systems for polar substorms and their magnetic effect below and above the ionosphere, Radio Sciences, 6, 269-275, 1971.


Saka, O., Akaki, H., and Baker, D.N.: A satellite magnetometer observation of dusk-to-dawn


Figure captions

Figure 1.
Upper panel: Local time distribution of W event and E event (see below). Lower panels: Epoch superposition of field line deflections in degrees for Goes5/6. Those events with eastward deflections (clockwise rotation, azimuth angle decreased) at T=0 shown to the left (E event) and those with westward deflections (counterclockwise rotation, azimuth angle increase) at T=0 are to the right (W event). T=0 marked by vertical dotted lines corresponds to the first peak of the Pi2 waveform. Amplitudes at the onset (T=0) were subtracted from the original data to adjust the pre-onset level. Plots covered 40 min from T-10 min to T+30 min. Mean value of the epoch plot and mean value of band-passed (6-20 mHz: Pi2 band) amplitudes are also shown. The field line rotations projected to the equatorial plane are illustrated for E event and W event in the Figure (viewed from north of the equatorial plane).

Figure 2.
A progress of field line thinning in the growth phase is illustrated. The inflow flux ($F_\perp$) rotated counterclockwise in times designated by red, green, and to blue arrows north of the equatorial plane. South of the equatorial plane, rotation was in a clockwise direction. The rotation of the inflow vectors produced the field-aligned component of the flux, $\delta F_{\parallel} = F_{\perp} (\omega \cdot \delta t)$, as depicted in the inset with one in the northern hemisphere shown. Note that inflows are localized earthward of the outer field lines.

Figure 3.
Simulated pitch angle spectrogram of energy flux for drift Maxwell distributions of phase space density. Energy flux was shown in contour plots with arbitrary amplitudes. To show how the pitch angle spectrogram evolves, drift velocities in parallel and perpendicular directions with respect to the background magnetic fields have changed. No drifts in both perpendicular and parallel to the background field lines (A). Only parallel drifts increased; 0.3$V_{th}$ (B), 0.6$V_{th}$ (C) and 1.0$V_{th}$ (D). For (E) and (F), perpendicular drift increased to 0.3$V_{th}$ and 0.5$V_{th}$ while parallel drift remained at 1.0$V_{th}$. $V_{th}$ denotes thermal velocity. The vertical axis is for pitch angles, while the horizontal axis is for particle energies normalized by the thermal energy.
Figure 4.
(A) Multiple Pi2 event (1, 2, 3, and 4 labelled in the Figure) with positive bay observed at low latitude station (KUJ) at L=1.2 in the midnight sector (23:42 MLT at 15:00 UT). The figure, from 1430 UT to 1600 UT 31 August 1986, was reproduced from [Saka et al., 2002]. (B) Inclination angle of field lines in dipole coordinates along the satellite trajectories measured by AMPTE CCE spacecraft. Inclination angle \( \theta \) was defined as \( \theta = \tan^{-1}\left(\frac{H}{\sqrt{V^2 + D^2}}\right) \).

H is positive northward parallel to the dipole axis, V is radial outward, and D is dipole east. Vertical arrows denote dipolarization onset corresponding to the multiple Pi2; 1, 2, 3, and 4 in panel A. (C) Difference of duskward flux (counts/sample) \( J^- \) and dawnward flux \( J^+ \) for 63-85 keV ion channel measured by AMPTE CCE spacecraft. (D) Same as for (C) but for 125-210 keV ion channel.

Radial distance (R) in Re, MLaT in degrees, and MLT at 14:30 UT, 15:00 UT and 16:00 UT along satellite trajectory are shown in the bottom.

Figure 5.
A schematic illustration of particle measurement in X-Y plane of GSE coordinates; X is earthward, Y is duskward in ecliptic plane. For the time interval of multiple Pi2 event when the satellite was at 22 MLT, duskward flux represented by \( J^- \) came from the earthward sector and dawnward flux \( J^+ \) from tailward sector. \( J^- > J^+ \) because of the pressure gradient positive earthward. Spatial gradient represented by solid line relaxed to dotted line.

Radial separation, \( X_1 - X_2 \), is either 1000 km or 1800 km for 63-85 keV ions or 125-210 keV ions, respectively.

Figure 6.
A schematic illustration of the field line deformations in the meridian plane associated with the changing curvature radius of the field lines. The outer field lines marked by (1) changed to field lines (2) by increasing their curvature radius to R1 (red-dashed circle) in association with the relaxation of radial inhomogeneity, while the inner field lines marked by (3) moved...
to field lines (4) of smaller curvature radius R2 (blue-dashed circle). This transition, (3) to (4), may be caused by the radial gradient of magnetic pressures becoming steeper in association with the inward compression of the field lines (see text). In the inset, flux tube deformations in the equatorial cross section is illustrated at onset locations (field lines 1 and 2). Divergence of perpendicular flows in dawn-dusk directions (solid arrows) produced dawn-dusk expansion of flux tube (2) coincide with the shrinkage of stretched flux tube (1). Flux tube deformation from 1 to 2 tended to preserve the total magnetic fluxes in the equatorial cross section.

Figure 7.

(A) Vertical component of \((rot \mathbf{J})_Z\) in the meridian chain along 300° E for the interval from 1000 UT to 1500 UT, reproduced from Saka and Hayashi (2017). Dipolarization onset was at 12:13 UT at this meridian. For the calculation of \((rot \mathbf{J})_Z\), vertical component data from RES (83.0° N, 299.7° E), CBB (76.6° N, 301.2° E), CONT (72.6° N, 298.3° E), YKC (68.9° N, 298.0° E), FSIM (67.2° N, 290.8° E), FSJ (61.9° N, 295.5° E), and VIC (54.1° N, 296.7° E) along the magnetic meridian 300° E were used (see text). Positive for the clockwise rotation (CW) of ionospheric currents and negative for the counterclockwise rotation (CCW) viewed from above the ionosphere. Amplitudes are color-coded. The scale is shown on the right. The demarcation lines separating CCW and CW in latitudes are marked by dashed line. The demarcation line moved to poleward after the onset. Note that negative \((rot \mathbf{J})_Z\) in poleward edge indicates smooth decrease of the Z amplitudes.

(B) Time progresses of the CW/CCW patterns are illustrated separately in five segments from 1 to 5 marked in Figure 7 (A). The figure demonstrates a progress of CW/CCW pair in time, CW in the poleward and CCW in the equatorward. This pair developed its size after onset showing poleward expansion. The meridional current associated with this pair of loop current, if closed in the equatorial plane via the field-aligned currents, comprised the Bostrom type current system.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 7

(A) 

(rot J)_z

CBB: 76.6
CONT: 72.6
YKC: 68.9
FSIM: 67.2
FSJ: 61.9

(B) 

Latitudes

Time

CONT
YKC
FSIM
FSJ

CW
CCW

Figure 7